P4C
The P4 Compiler
Loading...
Searching...
No Matches
P4::FindVariableValues Class Referencefinal

#include <global_copyprop.h>

Inheritance diagram for P4::FindVariableValues:
[legend]

Public Member Functions

 FindVariableValues (ReferenceMap *refMap, TypeMap *typeMap, std::map< const IR::Node *, std::map< cstring, const IR::Expression * > * > *acts)
 
- Public Member Functions inherited from P4::Inspector
const IR::Nodeapply_visitor (const IR::Node *, const char *name=0) override
 
profile_t init_apply (const IR::Node *root) override
 
virtual void loop_revisit (const IR::Node *)
 
virtual void postorder (const IR::Node *)
 
virtual bool preorder (const IR::Node *)
 
virtual void revisit (const IR::Node *)
 
void revisit_visited ()
 
bool visit_in_progress (const IR::Node *n) const
 
void visitAgain () const override
 
void visitOnce () const override
 
- Public Member Functions inherited from P4::Visitor
virtual bool check_global (cstring)
 
virtual void clear_globals ()
 
virtual Visitorclone () const
 
virtual ControlFlowVisitorcontrolFlowVisitor ()
 
virtual void end_apply ()
 
virtual void end_apply (const IR::Node *root)
 
virtual void erase_global (cstring)
 
template<class T >
const T * findContext () const
 
template<class T >
const T * findContext (const Context *&c) const
 
template<class T >
const T * findOrigCtxt () const
 
template<class T >
const T * findOrigCtxt (const Context *&c) const
 
virtual Visitorflow_clone ()
 
virtual void flow_merge (Visitor &)
 
virtual bool flow_merge_closure (Visitor &)
 
virtual void flow_merge_global_from (cstring)
 
virtual void flow_merge_global_to (cstring)
 
const ContextgetChildContext () const
 
int getChildrenVisited () const
 
const ContextgetContext () const
 
int getContextDepth () const
 
const IR::NodegetCurrentNode () const
 
template<class T >
const T * getCurrentNode () const
 
const IR::NodegetOriginal () const
 
template<class T >
const T * getOriginal () const
 
template<class T >
const T * getParent () const
 
virtual bool has_flow_joins () const
 
profile_t init_apply (const IR::Node *root, const Context *parent_context)
 
bool isInContext (const IR::Node *n) const
 
virtual const char * name () const
 
template<class T >
void parallel_visit (const IR::Vector< T > &v, const char *name, int cidx)
 
template<class T >
void parallel_visit (const IR::Vector< T > &v, const char *name=0)
 
template<class T >
void parallel_visit (IR::Vector< T > &v, const char *name, int cidx)
 
template<class T >
void parallel_visit (IR::Vector< T > &v, const char *name=0)
 
void print_context () const
 
const VisitorsetCalledBy (const Visitor *visitor)
 
void setName (const char *name)
 
void visit (const IR::Node &n, const char *name, int cidx)
 
void visit (const IR::Node &n, const char *name=0)
 
void visit (const IR::Node *&n, const char *name, int cidx)
 
void visit (const IR::Node *&n, const char *name=0)
 
void visit (const IR::Node *const &n, const char *name, int cidx)
 
void visit (const IR::Node *const &n, const char *name=0)
 
void visit (IR::Node &n, const char *name, int cidx)
 
void visit (IR::Node &n, const char *name=0)
 
void visit (IR::Node *&, const char *=0, int=0)
 
template<class T , typename = std::enable_if_t<Util::has_SourceInfo_v<T> && !std::is_pointer_v<T>>, class... Args>
void warn (const int kind, const char *format, const T &node, Args &&...args)
 The const ref variant of the above.
 
template<class T , typename = std::enable_if_t<Util::has_SourceInfo_v<T>>, class... Args>
void warn (const int kind, const char *format, const T *node, Args &&...args)
 
bool warning_enabled (int warning_kind) const
 

Additional Inherited Members

- Public Types inherited from P4::Visitor
typedef Visitor_Context Context
 
- Static Public Member Functions inherited from P4::Visitor
static cstring demangle (const char *)
 
static bool warning_enabled (const Visitor *visitor, int warning_kind)
 
- Public Attributes inherited from P4::Visitor
const Visitorcalled_by = nullptr
 
cstring internalName
 
SplitFlowVisit_base *& split_link
 
SplitFlowVisit_basesplit_link_mem = nullptr
 
- Protected Member Functions inherited from P4::Visitor
virtual void init_join_flows (const IR::Node *)
 
virtual bool join_flows (const IR::Node *)
 
virtual void post_join_flows (const IR::Node *, const IR::Node *)
 
void visit_children (const IR::Node *, std::function< void()> fn)
 
- Protected Attributes inherited from P4::Visitor
bool dontForwardChildrenBeforePreorder = false
 
bool joinFlows = false
 
bool visitDagOnce = true
 

Detailed Description

Global copy propagation, currently only operationg on control blocks where it optimizes the bodies of actions by propagating literal values for variables used in those actions. Pass is limited to only optimizing actions called in the 'apply' body of the control block and has no effect on actions found in tables. This pass is designed as an extension of the LocalCopyPropagation pass, but the logic has been separated into a standalone pass to avoid additionally complicating the LocalCopyProp pass. GlobalCopyPropagation pass was made with the intent of being used together with the existing LocalCopyPropagation pass, and therefore doesn't introduce some of the features of that pass.

The logic of this pass is divided into 2 passes, an Inspector pass that collects information on the variables used in the program and their values at the time of the action call and a Transformer pass that uses this information to edit the action bodies. The nature of the below mentionied optimization is such that it requires retroactive transformations to the action bodies, and this was the reason for having 2 separate passes.

The main situation that this pass optimizes is given below: ... control ing(out bit<16> y, ...) { bit<16> x; action do_action() { y = x; }

apply { x = 16w5; do_action(); } } ...

, and after optimization: ... control ing(out bit<16> y, ...) { action do_action() { y = 16w5; }

apply { do_action(); } } ...

Precondition
This pass should be run after the LocalizeAllActions frontend pass, which ensures that each action is invoked only once. This pass operates on control blocks and collects information about the state of the variables in that block and later distributes this information to the Transformer pass. Information is represented as a map that contains literal values for variables that need to be propagated, each action node has it's own map of information.